Heat Flow Calculation
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The HEAT code represents an evolving effort to quantify hest flow in and around magma bodies in order to
better understand geothermal gradients in volcanic areas. As such the following documentation is dso evolving.
Firgt the more anaytical approaches are reviewed and their limitationsin handling real-world effects of multiple
dimengons, latent heet, and convection are mentioned. Then the numerica approach used in the HEAT code
is discussed. At present, the codeisin 2-D form but it will be expanded to 3-D. Users should keep in mind
the potentia affects of representing 3-D magma bodies in 2-D form, the generd result being maximum cooling
times being predicted.

1. Analytical Approach

Analytical Theory. Assuming that the magmais emplaced ingtantaneoudy and that it experiences no further
movement nor loss or gain of mass, the cooling and heet transfer is governed by conservation of energy:
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where T istemperature, t istime, k isthermd diffusivity, u is the magma convective velocity vector, and g
represents heat sources and sinks. This equation describes the change of temperature with time (lft- hand-
sde LHS) with the right-hand-sde (RHS) summing the effects of therma conductivity (first term), thermd
convection (second term), heat sources and sinks (third term). Given the height of the drift as 5.5 m, one may
show by congderation of the magnitude of the thermd Rayleigh number that magma convection will not occur
within the drift. Secondly | assume that there are no heat sinks or source other than latent heat of magma
crydalization.

To dart the andys's, assume that there is no latent heat released during magma crystalization and no
thermal property contrasts between the magma and tuff. First consider the case for 1-D cartesian coordinates,
such that the drift is represented by adab of afinite thickness but of infinite length and width. These
assumptions dlow a 1-D expression of Eqg. (1) as.
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for which x represents distance measured perpendicular to the surface of the dab. Analytica solution of Eq.
(2) for geologicd systems has most commonly been achieved by assuming sdf-amilarity of solutions (Cardaw
and Jaeger, 1947) in which temperature is expressed non-dimensondly asq:
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for which subscripts m and O refer to theinitid temperature of the magma and tuff, respectively. A sngle
amilarity variable, h, can be defined that combines both tempora as spatid effects, and it is defined asthe
ratio of distance to twice the characteristic thermal diffusion distance:
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Rewriting Eq. (2) usng non-dimensiond temperature, g, and the amilarity variable, X, requires derivation of q
with respect to t and x interms of h and reduces Eq. (2) from apartia differentid equation to an ordinary
differential equation:
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In order to solve Eq. (5), one may define avariablej = dg/dh so that Eq. (5) becomes:
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With Integration and exponentiation Eg. (6), one can show:
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inwhich ¢ isacongant of integration. Considering the boundary between a magma and rock where h = 0,
g(0) ° 12, integration of Eq. (7) yidds
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for which nisan arbitrary integration variable. For the boundary condition q(¥) = O:
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For n3 0 the definiteintegra in Eq. (9) is equd to p¥?/2, and the constant ¢ = - (2/p*?)/2 so that
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For n £ 0, ¢ = (2/pY?)/2 and recdlling that erf(-h) = -erf(h) the olution is:
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Jaeger (1968) defines a problem for cooling of a sheet-like magma body of thickness, 2a, intruded
beneath deep cover, for which the x-axis origin is defined at the center of the sheet. For this problem g must
be evauated away from both surfaces of the sheet (x-a and x+ a), and because the solution Egs. (10aand
10b) are linear they can be summed:
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Multiple Dimensions. The above equations are vaid only in 1-D, which does not adequately model a drift
of circular cross-section and afinite length. Consder the 3-D form of Eq. (2), expressed in cartesan
coordinates:

‘HT &!TT ‘ITT+‘|TT0 (12)

gﬂx W 175

Cardaw and Jaeger (1959) show the solution to Eq. (12) issmilar to that of Eq. (11) but with added terms
for the extradimensons:
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for which a = the hdf-height, b = the hdf-width, ¢ = the hdf-length of the drift. Eq. (12) can be expressed
using cylindrical coordinates with radid distance, r, azimuth f , and length, z
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Cylindrica coordinates dlows smplifying a 3-D problem to 2-D by assuming radid symmetry about the z-axis
such that 1 *T/9f % = 0. Furthermore, if the heat source (magma body) can be represented by a cylinder
whose length is much greater than its diameter (such as a condit) then 1 2T/ Z vanishes for radid solutions
midway aong the cylinder a dl times earlier than the z-coordinate diffusive time; thistime can be eadly



determined for the value of the last term of Eq. (13), which iswithin 0.001% of unity for erf(n) wheren @ p.
Lettingn 3 c/[2(kt)¥?] 3 p,thent £ = c¥4pk . For example, aconduit of half-lengthc = 500 mand k =
0.0000004 /s requires 500 years of cooling before the effects of the z axis begin to appear. With this
consderation Eq. (14) is suitably expressed:
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From Cardaw and Jaeger [1959, 82.2(9)], the solution of Eq. (15) isthat of an infinite cylinder wherew = the
cylinder radius and from Cardaw and Jaeger’ s x-coordinate is replaced by r and their y-coordinate is set to
zero (z=0):
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Latent Heat and Thermal Property Contrasts. Addressing the issue of contrasting therma properties
between the magma and host rock, Delaney (1987) shows from work by Lovering (1936) the initia contact
temperature as.
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for which the subscripts m and t refer to the magma and tuff respectively. However, Delaney (1987) finds that
athough therma property contrasts affect the maximum temperature achieved in the hogt rock (tuff in this
case), they do not have large influence over solutions at late times. In fact Delaney (1987) points out that most
workers do not consider thermal property contrasts.

The effect of latent heat (L) production is not negligible, but as Deaney (1987) points out, thereis no
andytically exact method to include its effects. Assuming L = 350 kJkg, afirst approximation of its effect is
find an effective initid magma temperature, T* ,,, by adding to the temperature of the magma the amount L/c;,
(L/c = 350 kJ kg /1.2 kI kg K™* = 292°C). Delaney (1987) finds that setting T*, = T, + L/Ci, provides for
adequate solutions for temperaturesin host rocks a a distance of more than a quarter of a dike thickness
away from the contact.

The main problem with the gpproximate approach for including the effect of latent hest is that
temperature profiles within and near the magma-filled drift are not redistic and are too high. A more physicaly
accurate method to account for latent hest is discussed by Turcotte and Schubert (1982); they follow the
classcd Stefan problem in which the cooling of abody of magma has a definite solidification temperature, Ts =
Tm. Consdering a 1-D case (dab-like geometry) and amagmaintruded & x < O, the solidification surface
occurs at Xs:
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forwhich | isacongant to be determined. With this approach, one needs a solution that fits the conditions
that g =1 (T = T, = Ts) where x = Xs. The solution implies that the temperature at any point, defined by h
[from Eq. (4)] is proportiona to the position of the solidification surface defined by | :
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For X £ Xs T=Tyn andfor Xs<x <0, T, > T > T,. Thissolution isvaid only for times at which latent heet is
being released in the magma (i.e., the temperature at the hottest part of the magma, the center of the drift, is
above the magma s solidus temperature).

Because Ts = Ty, Solidification occursimmediately during cooling from T, releasing latent heet a a
rate r L(dx./dt)dt, and by equating this rate with the rate of heat conduction by Fourier’ slaw gives.
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The derivative on the left-hand-sde of EQ. (20) can be found by differentiating Eq. (18):
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The derivative on the right-hand-sde of Eq. (20) can be found by differentiating Eq. (19):
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A transcendentdl equation of | is given by subgtituting Egs. (21) and (22) into Eq. (20) and recalling that k =
r ck:
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With Egs. (19 and 23), temperatures in time an space can be calculated for 1-D problemsthat involve
release of |atent heat. Furthermore, Eq. (18) can be used to caculate the time for dl the magmato solidify
(i.e., when the solidification surface reaches the center of the dab and X2 = a® where a is the dab half-
thickness). The solidification time is a function of one-quarter of the area a®:
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Considering cylindrical geometry, the area expressed by the term, &2, in Eq. (24) becomes pa?/4. Replacing
the cartesian position of the solidification surface by its cylindricd equivdent, R, Eq. (18) becomes:

R =-4l+/kt/p , (25)
and, the transcendenta equation for | is
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For givenvduesaof L, ¢, Ty, and Ty, | can be found by iteratively caculaing the right- hand-side of
Eq. (26) until it equas the left-hand-side. For a system wherer is O at the contact between magma and host
rock and increases towards the center of the magma body, the following solutions depend upon the vaue of
R, whichisafunctionof | .
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As Cardaw and Jaeger (1959) point out, there is no exact solution for a cylinder beyond itsradius. Eq. (28)
takesinto account the cylindrical geometry in the same fashion as Eq. (16). As such, thissolution is
approximate, but comparisons of its calculated results with those from Eq. (16) show remarkable smilarity, as
will be discussed later. The solutions are vadid for early-times when liquid magma (above its solidus) exigs.
The full solidification time occurs when the solidification surface, R, reaches the center of the magma hest
source, and it is interesting to note that cal culated maximum magma temperatures & this point in time can be
very close to redigtic solidus temperatures, even though they are not included in Eq. (26)

Because magma solidifies over arange of temperatures (Ts < T,,) and disolays asmal but finite
contrast in thermd properties with tuff, one can follow the more complicated andlysis of Cardaw and Jaeger
(1959). For conditions where the conductivity of liquid and solid magmaequd (km = Ks), the transcendental
equationin| from Cardaw and Jaeger (1959) can be modified for cylindrical geometry and property
contrasts [cf. Cardaw and Jaeger (1959) §2.16(42) and §11.2(42):
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Eq. (30) account for the effects of latent hest by the variable p, which is the square-root of the ratio of
diffusvities (k) of the solid (subscript s) and liquid (subscript m). The magma diffusivity reflects the effect of a
higher effective heat capacity from the addition of latent hegt:
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The effect of property contrasts between the magma and tuff in Eq. (30) are accounted for by the variable, s
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The solutions temperature are like those in Egs. (27-29) and depend upon the tempord radia position of the
cooling surface, Rs.
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Agan the effect of cylindrica divergence is accounted for asin Eqg. (28). Egs. (30-36) take into
account latent heat being released between T, and T (solidus temperature) as well as property contrasts
between the magma (subscript m) and tuff (subscript t). Compared to the calculation for latent heat where T
= T, the effect of T < Ty, generdly increases the length of time for complete solidification by ~20% (without
property contrasts) to 200% (with property contrasts).

2. Numerical Approach



The HEAT code solves hest flow by finite difference solution of energy and momentum conservation
equations (i.e., Navier- Stokes) thereby getting around many of the problems and limitations of andyticd
approaches discussed above. These equations express heat transfer by conduction and convection with
nonlinearities arisng from variaion of therma conductivity in a nortisotropic (heterogeneous) materid and heat
sources/sinks (e.g., latency). Natura convection involves not only convection within magmatic bodies but so
within ssturated permesable rock. The Boussinesq gpproximation and its importance in stating the Navier-
Stokes equationsisfirst presented in agenerd form. Then in geophysica applications, momentum
conservation by Darcy’ s equation is employed because of its empirica success. Findly, discretization of the
nonlinear partid differentia equations involved is shown for the conductive, convective, and heat source terms
of the energy conservation equation.

General. In the Boussnesq gpproximation, variationsin r are ignored, except insofar asthey giveriseto a
gravitationd force. The continuity equation of fluid flow then becomes

N:(ru)=rN:u=N:u=0 . (37)
The derivative term can aso be rewritten

F——»r,— . (38)
The gravity forceis

F=rg, (39)

where gravity is given by the gravitationd potentia

g=- Nf (40)
and
r=ry,+Dr (41)

The force due to gravity can then be rewritten
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=-N(r f)+Drg (42)
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The Navier- Stokes equations are the fundamentd partid differentids equations that describe the flow of

incompressible fluids. Using the rate of stress and rate of strain tensors, it can be shown that the components
F; of aviscous force F in anonroteting frame are given by momentum conservation
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where h isthe dynamic viscosty, | isthe bulk viscosity, dso caled the second viscosity coefficient (Tritton
1989), N is the divergence, and Einstein summation has been used to sum over j = 1, 2, and 3. Now, for an
incompressible fluid, the divergence Nxi = 0, so the | term drops out.

Fi consstsof F, (viscousforce), F, (pressure force), and Fy, (body force), where
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The Navier- Stokes equation for flow then becomes
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Linearize Dr with temperature using the therma expansion coefficient a
Dr =-ar,DT (47)

And divideby r o , remembering that kinematic viscosity isu = h/r  to obtain momentum conservation
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With the addition of an equation for temperature, this will complete the Boussinesg equations. Let H be the
conductive hest flux and J be the heat generated per unit volume.

H=-kNT (49)

Energy consarvationis expressed as
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where ¢, is the constant pressure heat capacity such that with divison by r ¢, we get
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Equations (1)-(14) are the Boussinesg convection equeations. The terms in these equations are given the
following names where -gDT is the buoyancy force, kN* T is the heat conduction term, J/(r ¢,) isthe heat
generation term, and uNT is the advection term. If the buoyancy force is the sole cause of motion, the
convection is termed free convection. If the buoyancy force is negligible, the convection is termed forced
convection.

Expanding the full derivatives, defining the thermd diffusivity k © k/r C,,, and setting g = J/r C,, the Boussinesg
convection equations are for momentum and continuity

—=-—Np- uXNu+nN?u- gaDT (52)

and for energy conservation
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Geophysical Application. Conductive and convective energy trandfer are specified in Eq. (53), and for
water-saturated porous rock, u can be caculated while conserving momentum with the Darcy equation:

T (Fp- F,) (54)
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where mis the permesbility, h is the fluid dynamic viscosity (viscous forces), Np is the fluid pressure gradient
(buoyancy), and F, isthe hydrostatic (body) force. Now let’s consider the balance of the buoyant force and
body force insgde the brackets of Eq. (54). For the hydrostatic case pressure acts downward:

F,=rq9 . (55)

The fluid pressure gradient is related to a change in density with temperature [Egs. (42) and (47)] by:
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so that for upward convection to occur, the buoyant force must exceed the body force
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Then Eq. (54) becomes
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So permeability and therma conductivity are important factors is determining heet flow in porous media, but
the conductivity is affected by the presence of fluid saturated pores such that an effective conductivity ke must
be considered:

k, =nk,, + (L- n)k, (59)

where subscripts w and r refer to water and rock, respectively, and n isthe porosity. Also thermd
conductivity varies with temperature and pressure, and the following relaionship from Chapman and Furlong
(1991) expressesthat variation:

gl+czop

k(T,2)= k0e1+ o

(60)

Where convection will occur can be determined by the vaue of the sysem’ stherma Rayleigh number, aratio
of buoyant and viscous forces:
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where H isathe height of the fluid system. In general where Ra > 1000 to 2000 convection will occur. For a
fully saturated aguifer where the system length scale is determined by a network of pores, permesbility isan
important limitation, Ramay be expressed as
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convection will st in where
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For magmeas convection can be represented as occurring in a vertica pipe driven by the pressure gradient, and
EQ. (58) can be replaced by the Poiseuille equation for viscous flow:
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inwhich r isthe effective pipe radius and L is the distance over which afluid pressure gradient exists. Magmas
below their liquidus temperature are multiphase materials dominated by the liquid and crystds, the former of
which is lighter than the latter. During convection because of density contrasts, Stokes flow exists and the
liquid moves past the crystals to some degree, resulting in crysta settling. This phenomenais strongly
temperature dependent such that during cooling as the solidus temperature is gpproached, the fraction of liquid
present decreases and the network of inter-crystal passage ways becomes more redtrictive, adding akind of
permesbility effect. Thus one can view liquid convection in magma impeded by crystds; thus, the vaue of
r%(8L) in Eq. (64) can be replaced by atemperature-dependent expression of liquid permesbility as afunction
of solid-fraction porosity.

Method for Numerical Solution of Conductive Heat Flow. Starting with the differentid equation for heat
conduction only, which is of parabolic form:
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expand derivativesin 3-D Cartesan coordinates.
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or dterndtivey in 3-D cylindrical coordinates:
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Heat3D uses 3-D Cartesian coordinates. An explicit forward time-centered space (FTCS) schemeisthe
smplest numerical approach, is afird-order gpproximation, and is inherently stable (Crank, 1956); however,
an explicit Dufort-Frankel schemeis a second-order approximation and unconditionaly stable, and an implicit
Crank-Nicholson schemeis dso unconditionally stable and should provide a somewhat faster solutions. For
this study, | demondtrate the FTCS and Dufort-Frankel methods.



The finite difference solution requires discretization of derivatives following generd rules (e.g., Differentiated
Stirling approximation); for example for fictitious quantity A:

dA/dx = DA/Dx = [A(j+1) — A(-1)] / 2Dx . (67)
and
dA?/dx? = D (DA/Dx)/ Dx ={ [A(+1) —A()]/ 2x }- [AG) - AG-1)] / 2x } Ix

=[A(+1) - 2A() + A(j-1) ] / Dx2 (68)

For amplicity, | use the following notation:

T" = forward time temperature T° = backward time temperature

Ke= ku(i,])  ka=kdi,j-1) Ko = ky(i, j+1)
T=T(,]j) T = T, -1 Te= T, j+1)
k= ki, i) k= Ky(i-L, ) k= kyi+1,])
T = Tf0-L J) T = Tfi+1,)) (69)

Using cdl-averaged vaues for coefficients of derivatives.

AG-D) =[AG-D+AGN2 - AG+1) =[A(G+1) + A())/2
Al) =[AG-1) + A+ D12=[AG-1) + 2A() + A(+D)]/4 (70)
(T-T)/[ D] [ (k- ka) 1 (2DX) ] [ (Tia - Tia) / (2DX) |
[ (kyz- ky2) / (2Dy) 1 [ (Tyo - Tya) / (2Dy) ]
[ (ke —ka)/ (2D2) ] [ (T2—Ta)/(2D2) ]
[ Ta(ka + k) 12 - 2Ty (K + 2y +kyo) /4 + Too(ky + ko) 12] 1 (DXP)
[ Tyl(kyl + ky) 12 - 2Ty (kyl + 2ky +ky2) 14+ Ty (ky + kYZ)/ 2]/ (DXZ)
[ Talka + k) 12 - 2T, (Kn + 2k, +kp) 14+ Ty (ky + k)21 1 (DXP) (71)

+ + 4+ + + 1

For Dx =Dy = Dz

-7 [Dt/ (Dx?) ] [(KeeTe - KeTwa - KaTe + kaTa )4 ]

[Dt / (Dx®) ] [(KyaTyz - KyoTya - kya Ty + KyaTya )/4]

[Dt/ (Dx?) ] [(KoTe —KoTan —KanTp + knTx )/4]

[Dt/ (Dx?) ] [(kaTwa + keToa)/2 - 2(ka T + 2KyTy + kT4 + (KeToo + Ko Tio)/2]

[Dt / (Dx*) ] [(KaTya + KyTya)/2 - 2(kyaTy + 2K, Ty + KT, )/4 + (K Tyo + KyoTy0)/2]

[Dt/ (DX?) ] [(KaTa + KTa)/2 - 2(KaT, + 2k, T, + KpoT)/4 + (K T+ koT2)/2] (72)

+ + 4+ + + 1

T"=T+[Dt/(Dx?]
{ [ DTy - 2Dy T + D)QT)Q] + [ Dleyl - 2DyTy + D)QT)/Z] + [ D, T, - 2D, T, + DyT, ]} (73)

where:



Dy = (Bkua + 2ky- ko) /4; Dy = (3K + 2Ky - ki) / 4 Dy=(ka + 2k + ky) / 4;
Da=Bka+2k,—kp)/4; Dp=(3ke+2k,—ka)/4 D,=(kan+ 2k, +kp)/4;

Although gtability of the numerica solution of Eq. (73) is guaranteed by the Courant-Friedrich-Lewy (CFL)
dability condition (Dt < 0.5 Dx / Dngy), it isimportant to note with the above formulation that some vaues of
D can be negative, which reflects a dominating effect of the diffusvity gradient and can cause numerical
ingability. This problem is corrected by using more consarvative vaues of D:

DXlz(kX1+kX)/2; D><2:(kx2+kx)/2 sz(kx1+2kx+kx2)/4;
Dp=(kyu+tk)/2; Dp=(Kkot+tk)/2 Dy = (kyr + 2k, + ko) / 4;
Dzlz(kzl+kz)/2; D22:(k22+kz)/2 Dzz(kzl+2kz+k22)/4;

The Dufort-Frankel scheme solves the tempora derivative (T — T°)/2Dt by replacing (2DT) termsin Eq. (73)
by (DT" + DT°). Defining

a° 2(D, +D, +D,)Dt/3D¢ (74)

one can express this scheme, retaining the anisotropy (heterogenaity) of diffusivities:
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Method for Solution of Convective Heat Flow. The differentid equation is shown below:

T =- %(r ,0aDT)NT (76)
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In Eq. (74) K represent parameters appropriate for either Darcy (Eq. 58) or Poiseuille (Eq. 64) flow.
Numericd solutions of Eq. (74) are very senditive to temperature gradients and prone to be unstable, unless
explicit mass and momentum consarvation are Smultaneoudy satisfied. Alterndtively by observing limiting
boundary conditions, solutionsto Eq. (76) can approximate the effects of convection in afashion that
numericaly mimics effective diffusvity.

T'=T+[Dt/D2X] [ U (T~ Te) + Uy (Tu = T2 )+ U (Ta = T2) ], (7

For which the velocity vectors u, Uy, and u, are found through Egs. (58 and 64) and stability isinsured by the
CFL gability used in Eq. (73).



Method for Solution of Heat Sources/Sinks. By assuming an explicit temperature range over which
crydalization/melting occurs, a congtant latent heet of fuson/crystdlization, and alinear relationship between
crystal content and temperature over this range, an iteraive solution is possible. For Heat cdculationsthis
amplification is represented by:

E =- QIdT = Q (T -T ”).
ﬂt (Cp + :D DTSI (Cp + :D DTsI ,

(78)

for which hest is expressed in kJ, Q isthe latent hest, ¢, is heat capacity, dT isan incrementa changein
temperature by conduction and convection (T" — T from Egs. 36 and 38), and DTy is the temperature
difference between the liquidus and solidus. For Q = 350 kJ/kg, ¢, = 1 kJkg-K, and DTy = 350 K, Eq. (76)
satesthat for dT = two degrees of cooling by conduction/convection there is one degree heat added by
crydalization. For these vaues, iterative solution of Eq. (78) resultsin addition of 350 kJkg of hegt to the
magma for cooling from the liquidus temperature to the solidus.
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